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Generalizing from Rn

We have learnt that for a subspace U of Rn, if U 6= {0}, then
1. U has a basis, and dim(U) ≤ n.
2. Any independent subset of U can be extended (by adding vectors) to a

basis of U.
3. Any spanning set of U can be cut down (by deleting vectors) to a basis

of U.
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Definition
A vector space V is finite dimensional if it is spanned by a finite set of
vectors. Otherwise it is called infinite dimensional.

Example
1. Rn, Pn and Mmn are all examples of finite dimensional vector spaces
2. The zero vector space, {0}, is also finite dimensional, since it is

spanned by {0}.
3. P is an infinite dimensional vector space.
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Lemma (Independent Lemma)

Let V be a vector space and S = {v1, v2, . . . , vk} an independent subset of
V. Suppose u is a vector in V. Then

u 6∈ span(S) =⇒ S′ = {v1, v2, . . . , vk, u} is independent.

Proof.
Suppose that a1v1 + a2v2 + · · ·+ akvk + au = 0. We claim that a = 0.
Otherwise, if a 6= 0, then

au = −a1v1 − a2v2 − · · · − akvk,

implying that
u = −a1

a
v1 −

a2

a
v2 − · · · − ak

a
vk,

i.e., u ∈ span(S), a contradiction. Therefore, a = 0.
Now a = 0 implies that a1v1 + a2v2 + · · ·+ akvk = 0. Since S is independent,
a1 = a2 = · · · = ak = 0, and it follows that S′ is independent. �

Remark
Under the setting of the Independent Lemma, for u ∈ V, we have indeed:

u 6∈ span(S) ⇐⇒ S′ = {v1, v2, . . . , vk, u} is independent.
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Lemma
Let V be a finite dimensional vector space. If U is any subspace of V, then
any independent subset of U can be extended to a finite basis of U.

Algorithm 1: Proof of Lemma
Input : 1. V: finite dimensional vector space

2. U ⊆ V a subspace
3. W0 ⊆ U an independent subset of U

W0 → W;
while span{W} 6= U do

Pick up arbitrary x ∈ U \ span{W};
{x} ∪ W → W;
Independent Lemma guarantees that the new W is an
independent set;

end
Output: W, that is independent and spans U; hence a basis

of U.
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Constructing basis from independent sets by adding vectors

Theorem
Let V be a finite dimensional vector space spanned by a set of m vectors.
(1) V has a finite basis, and dim(V) ≤ m.
(2) Every independent subset of V can be extended to a basis of V by

adding vectors from any fixed basis of V.
(3) If U is a subspace of V, then

(i) U is finite dimensional and dim(U) ≤ dim(V);
(ii) every basis of U is part of a basis of V.

Proof.
(1) If V = {0}, then V has dimension zero, and the (unique) basis of V is
the empty set. Otherwise, choose any nonzero vector x in V and extend {x}
to a finite basis B of V (by a previous Lemma). By the Fundamental
Theorem, B has at most m elements, so dim(V) ≤ m.



Constructing basis from independent sets by adding vectors

Theorem
Let V be a finite dimensional vector space spanned by a set of m vectors.
(1) V has a finite basis, and dim(V) ≤ m.

(2) Every independent subset of V can be extended to a basis of V by
adding vectors from any fixed basis of V.

(3) If U is a subspace of V, then
(i) U is finite dimensional and dim(U) ≤ dim(V);
(ii) every basis of U is part of a basis of V.

Proof.
(1) If V = {0}, then V has dimension zero, and the (unique) basis of V is
the empty set. Otherwise, choose any nonzero vector x in V and extend {x}
to a finite basis B of V (by a previous Lemma). By the Fundamental
Theorem, B has at most m elements, so dim(V) ≤ m.



Constructing basis from independent sets by adding vectors

Theorem
Let V be a finite dimensional vector space spanned by a set of m vectors.
(1) V has a finite basis, and dim(V) ≤ m.
(2) Every independent subset of V can be extended to a basis of V by

adding vectors from any fixed basis of V.

(3) If U is a subspace of V, then
(i) U is finite dimensional and dim(U) ≤ dim(V);
(ii) every basis of U is part of a basis of V.

Proof.
(1) If V = {0}, then V has dimension zero, and the (unique) basis of V is
the empty set. Otherwise, choose any nonzero vector x in V and extend {x}
to a finite basis B of V (by a previous Lemma). By the Fundamental
Theorem, B has at most m elements, so dim(V) ≤ m.



Constructing basis from independent sets by adding vectors

Theorem
Let V be a finite dimensional vector space spanned by a set of m vectors.
(1) V has a finite basis, and dim(V) ≤ m.
(2) Every independent subset of V can be extended to a basis of V by

adding vectors from any fixed basis of V.
(3) If U is a subspace of V, then

(i) U is finite dimensional and dim(U) ≤ dim(V);
(ii) every basis of U is part of a basis of V.

Proof.
(1) If V = {0}, then V has dimension zero, and the (unique) basis of V is
the empty set. Otherwise, choose any nonzero vector x in V and extend {x}
to a finite basis B of V (by a previous Lemma). By the Fundamental
Theorem, B has at most m elements, so dim(V) ≤ m.



Constructing basis from independent sets by adding vectors

Theorem
Let V be a finite dimensional vector space spanned by a set of m vectors.
(1) V has a finite basis, and dim(V) ≤ m.
(2) Every independent subset of V can be extended to a basis of V by

adding vectors from any fixed basis of V.
(3) If U is a subspace of V, then

(i) U is finite dimensional and dim(U) ≤ dim(V);
(ii) every basis of U is part of a basis of V.

Proof.
(1) If V = {0}, then V has dimension zero, and the (unique) basis of V is
the empty set. Otherwise, choose any nonzero vector x in V and extend {x}
to a finite basis B of V (by a previous Lemma). By the Fundamental
Theorem, B has at most m elements, so dim(V) ≤ m.



Proof.
(2)

Algorithm 3: Proof of part 2
Input : 1. V: finite dimensional vector space spanned by m vectors

2. B: a basis of V (exists by part (1))
3. W0: an independent set of vectors in V

W0 → W;
while span{W} 6= V do

Find out one x ∈ B \ span{W};
{x} ∪ W → W;
Independent Lemma guarantees that the new W is an independent
set;

end
Output: W, that is independent and spans V; hence a basis of V.



Proof.
(3-i) If U = {0}, then dim(U) = 0 ≤ m = dim(V). Otherwise, choose x to
be any nonzero vector of U and extend {x} to a basis B of U (again by a
previous Lemma). Since B is an independent subset of V, B has at most
dim(V) elements, so dim(U) ≤ dim(V).

(3-ii) If U = {0}, then any basis of V suffices. Otherwise, any basis B of U
can be extended to a basis of V: because B is independent, we apply part
(2) of this theorem. �
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Problem

Extend the independent set S =




1
−1
1

−1

 ,


2
3
4
5


 to a basis of R4.

Solution (method 1.)

Let A =

[
1 −1 1 −1
2 3 4 5

]
. Because the elementary row operations

won’t change row space, let’s find the reduced row-echelon form of A

R =

[
1 0 7/5 2/5
0 1 2/5 7/5

]
.

(row(A) = row(R).) We need add two rows to R to get a nonsingular
matrix: 

1 0 7/5 2/5
0 1 2/5 7/5
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
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Solution (continued)
There are certainly multiple choices for those two rows. The simplest choice
might be the following: 

1 0 7/5 2/5
0 1 2/5 7/5

0 0 1 0
0 0 0 1


Hence,

B =




1
−1
1

−1

 ,


2
3
4
5

 ,~e3,~e4

 ,

gives a basis for R4. �



Below is a more systematical way to find all possible choices based on one
basis from V

Solution (method 2.)

A =


1 2 1 0 0 0
−1 3 0 1 0 0
1 4 0 0 1 0
−1 5 0 0 0 1

 → R =


1 2 1 0 0 0
0 1 1

5
1
5

0 0
0 0 − 7

5
− 2

5
1 0

0 0 − 2
5

− 7
5

0 1


Now we need to find four columns which include the first two columns from
the six columns of R to form a nonsingular matrix. Then the corresponding
columns from A form a basis for R4. Indeed, we can choose any two
columns from the last four columns. If we choose the last two columns, this
will give the result from the previous answer. �



Problem
Extend the independent set S = {x2 − 3x + 1, 2x3 + 3} to a basis of P3.

Solution (method 1.)
Using the fact that polynomials of distinct orders are independent, we need
only include missing orders. Hence: B = {1, x, x2 − 3x + 1, 2x3 + 3}. �

Remark
What happens if S = {x2 − 3x + 1, 2x2 + 3}?
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Solution (method 2.)
Transform each vector – polynomial – to a row vector and form a matrix:

A =

(
1 −3 1 0
3 0 0 2

)
Now the question is how one can add two rows to A to make it nonsingular:

1 −3 1 0
3 0 0 2
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


It is ready to check that the last two rows to be any of the following:(

1 0 0 0
0 1 0 0

)
or

(
1 0 0 0
0 0 1 0

)
or

(
0 0 1 0
0 0 0 1

)
or ...

For example, if we choose make the first choice, this will give us {1, x} as
the additional two polynomials. Therefore, we obtain a basis:
B = {1, x, x2 − 3x + 1, 2x3 + 3}. �

Solution (method 3.)
Carry out columns-wise... �
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Problem
Extend the independent set

S =

{[
−1 1
0 0

]
,

[
1 0

−1 0

]
,

[
0 1
0 1

]}
to a basis of M22.

Solution
S can be extended to a basis of M22 by adding a matrix from the standard
basis of M22. To methodically find such a matrix, try to express each
matrix of the standard basis of M22 as a linear combination of the matrices
of S. This results in four systems of linear equations, each in three
variables, and these can be solved simultaneously by putting the augmented
matrix in row-echelon form.

−1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 −1 0 0 0 1 0
0 0 1 0 0 0 1

 →


1 −1 0 −1 0 0 0
0 1 1 1 1 0 0
0 0 1 1 1 1 0
0 0 0 −1 −1 −1 1

 .
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Solution (continued)
The row-echelon matrix indicates that all four systems are inconsistent, and
thus any of the four matrices in the standard basis of M22 can be used to
extend S to an independent subset of four vectors (matrices) of M22. Let

B =

{[
−1 1
0 0

]
,

[
1 0

−1 0

]
,

[
0 1
0 1

]
,

[
1 0
0 0

]}
.

If span(B) 6= M22, then apply the Independent Lemma to get an
independent set with five vectors (matrices). Since M22 is spanned by{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
,

this contradicts the Fundamental Theorem. Therefore span(B) = M22, and
B is a basis of M22. �
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Subspaces of finite dimensional vector spaces

Theorem
Let V be a finite dimensional vector space, and let U and W be subspaces
of V.

1. If U ⊆ W, then dim(U) ≤ dim(W).
2. If U ⊆ W and dim(U) = dim(W), then U = W.

This is the generalization to finite dimensional vector spaces of the
corresponding result for Rn.

Proof.
1. Since W is a subspace of a finite dimensional vector space, this result

follows from a previous Theorem.
2. Let B be a basis of U, and suppose |B| = k = dim(W). Since U ⊆ W, B

is an independent subset of W. If span(B) 6= W, then W contains an
independent set of size k + 1, contradicting the Fundamental Theorem.
Therefore, B is a basis of W, and thus U = W.

�
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Problem
Let a ∈ R be fixed, and let

U = {p(x) ∈ Pn | p(a) = 0}.

Then U is a subspace of Pn (you should be able to prove this). Show that

S = {(x − a), (x − a)2, (x − a)3, . . . , (x − a)n}

is a basis of U.

Remark (Hints of the proof)
We need to show that the following:

1. Show that span(S) ⊆ U, and that S is independent.
2. Deduce that n ≤ dim(U) ≤ n + 1.
3. Show that dim(U) can not equal n + 1.
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Solution
I Each polynomial in S has a as a root, so S ⊆ U. Since U is a subspace

of Pn it follows that span(S) ⊆ U.
I Since the polynomials in S have distinct degrees ((x − a)i has degree i),

S is independent.
I Since span(S) ⊆ U ⊆ Pn, it follows that

dim(span(S)) ≤ dim(U) ≤ dim(Pn).

Since S is a basis of span(S), dim(span(S)) = n; also, dim(Pn) = n + 1,
and thus n ≤ dim(U) ≤ n + 1.

I Finally, if dim(U) = n + 1, then U = Pn, implying that every
polynomial in Pn has a as a root. However, x − a + 1 ∈ Pn but
x − a + 1 6∈ U, so dim(U) 6= n + 1. Therefore, dim(U) = n.

We now have span(S) ⊆ U and dim(span(S)) = n = dim(U). By a previous
Theorem, U = span(S), and hence S is a basis of U. �
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Lemma (Dependent Lemma)

Let V be a vector space and D = {v1, v2, . . . , vk} a subset of V, k ≥ 2.
Then D is dependent if and only if there is some vector in D that is a linear
combination of the other vectors in D.

Proof.
“⇒" Suppose that D is dependent. Then

t1v1 + t2v2 + · · ·+ tkvk = 0

for some t1, t2, . . . , tk ∈ R not all equal to zero. Note that we may assume
that t1 6= 0. Then

t1v1 = −t2v2 − t3v3 − · · · − tkvk

v1 = − t2
t1

v2 −
t3
t1

v3 − · · · − tk
t1

vk;

i.e., v1 is a linear combination of v2, v3, . . . , vk.
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Proof. (continued)
“⇐" Conversely, assume that some vector in D is a linear combination of
the other vectors of D. We may assume that v1 is a linear combination of
v2, v3, . . . , vk. Then

v1 = s2v2 + s3v3 + · · ·+ skvk

for some s2, s3, . . . , sk ∈ R, implying that

1v1 − s2v2 − s3v3 − · · · − xkvk = 0.

Thus there is a nontrivial linear combination of the vectors of D that
vanishes, so D is dependent. �

Suppose U = span(S) for some set of vectors S. If S is dependent, then we
can find a vector v in S that is a linear combination of the other vectors of
S. Deleting v from S results if a set T with span(T) = span(S) = U.
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Constructing basis from spanning sets by deleting vectors

Theorem
Let V be a finite dimensional vector space. Then any spanning set S of V
can be cut down to a basis of V by deleting vectors of S.

Proof.

Algorithm 4: Proof of Theorem
Input : 1. V: finite dimensional vector space spanned by m vectors

3. S: a spanning set of V

S → W;
while W is dependent do

Find out one x ∈ W that can be linearly represented by the rest;
W \ {x} → W;
Dependent Lemma guarantees that the span of the new W remains
to be V;

end
Output: W, that is independent and spans V; hence a basis of V.
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Problem
Let

X1 =

[
1 1
1 −1

]
, X2 =

[
2 0

−2 1

]
, X3 =

[
−1 1
0 −2

]
,

X4 =

[
1 2

−1 1

]
, and X5 =

[
0 2
2 −3

]
,

and let U = {X1,X2,X3,X4,X5}. Then span(U) = M22. Find a basis of
M22 from among the elements of U.

Solution
Since U has five matrices and dim(M22) = 4, U is dependent. Suppose

aX1 + bX2 + cX3 + dX4 + eX5 = 022.

This gives us a homogeneous system of four equations in five variables,
whose general solution is

a = −4

3
t; b =

1

3
t; c = −2

3
t; d = 0; e = t, for t ∈ R.
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Solution (continued)
Taking t = 3 gives us

−4X1 + X2 − 2X3 + 3X5 = 022.

From this, we see that X1 can be expressed as a linear combination of X2,
X3 and X5.

Let
B = {X2,X3,X4,X5}.

Then span(B) = span(U) = M22. If B is not independent, then apply the
Dependent Lemma to find a subset of three matrices of B that spans M22.
Since {[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
is an independent subset of M22, this contradicts the Fundamental
Theorem. Therefore B is independent, and hence is a basis of M22. �



Theorem (Generalization of Rn)

Let V be a finite dimensional vector space with dim(V) = n, and suppose S
is a subset of V containing n vectors. Then S is independent if and only if S
spans V.

Proof.
(⇒) Suppose S is independent. Since every independent set of V can be
extended to a basis of V, there exists a basis B of V with S ⊆ B. However,
|S| = n and |B| = n, and therefore S = B, i.e., S is a basis of V. In
particular, this implies that S spans V.

(⇐) Conversely, suppose that span(S) = V. Since every spanning set of V
can be cut down to a basis of V, there exists a basis B of V with B ⊆ S.
However, |S| = n and |B| = n, and therefore S = B, i.e., S is a basis of V. In
particular, this implies that S is an independent set of V. �

Remark
This theorem can be used to simplify the arguments used in various
problems covered.
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Problem
Find a basis of P2 among the elements of the set

U =
{
x2 − 3x + 2, 1− 2x, 2x2 + 1, 2x2 − x − 3

}
.

Solution
Since |U| = 4 > 3 = dim(P2), U is dependent.

Suppose a(x2 − 3x + 2) + b(1− 2x) + c(2x2 + 1) + d(2x2 − x − 3) = 0; then

(a + 2c + 2d)x2 + (−3a − 2b − d)x + (2a + b + c − 3d) = 0.

This leads to a system of three equations in four variables that can be
solved using gaussian elimination. 1 0 2 2 0

−3 −2 0 −1 0
2 1 1 −3 0

 →

 1 0 2 0 0
0 1 −3 0 0
0 0 0 1 0


Thus a = −2t, b = 3t, c = t and d = 0 for any t ∈ R. Also, since each row
of the reduced row-echelon matrix has a leading one, U spans P2.
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Solution (continued)
Let t = −1. Then

2(x2 − 3x + 2)− 3(1− 2x)− (2x2 + 1) = 0,

so any one of
{
x2 − 3x + 2, 1− 2x, 2x2 + 1

}
can be expressed as a linear

combination of the other two. Let’s remove x2 − 3x + 2. Hence, set

B =
{
1− 2x, 2x2 + 1, 2x2 − x − 3

}
.

Then span(B) = span(U) = P2. Since |B| = 3 = dim(P2), it follows from
that B is independent. Therefore, B ⊆ U is a basis of P2. �



Problem

Let V = {A ∈ M22 | AT = A}. Then V is a vector space. Find a basis of V
consisting of invertible matrices.

Remark
Note that V is the set of 2× 2 symmetric matrices, so

V =

{[
a b
b c

] ∣∣∣∣ a,b, c ∈ R
}

= span
{[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
From this, we deduce that dim(V) = 3. (Why?) Thus, a basis of V
consisting of invertible matrices will consist of three independent symmetric
invertible matrices.
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Solution
There are many solutions. Let

A =

[
1 0
0 0

]
, B =

[
0 1
1 0

]
, C =

[
0 0
0 1

]
.

The matrix B is invertible, so one approach is to take linear combinations
of A and C to produce two independent invertible matrices; for example

A + C =

[
1 0
0 1

]
and A − C =

[
1 0
0 −1

]
.

It is easy to verify that S = {A + C,A − C,B} is an independent subset of
2× 2 invertible symmetric matrices. Since |S| = 3 = dim(V), S spans V and
is therefore a basis of V. �



Generalizing from Rn

Constructing basis from independent sets by adding vectors

Subspaces of finite dimensional vector spaces

Constructing basis from spanning sets by deleting vectors

Sums and Intersections



Sums and Intersections

Definition
Let V be a vector space, and let U and W be subspaces of V. Then

1. U + W = {u + w | u ∈ U and w ∈ W} and is called the sum of U
and W.

2. U ∩ W = {v | v ∈ U and v ∈ W} and is called the intersection of U
and W.

3. If U and W are subspaces of a vector space V and U ∩ W = {0}, then
the sum of U and W is call the direct sum and is denoted U ⊕ W.

Lemma
Prove that both U + W and U ∩ W are subspaces of V.
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Proof. (of U + W)
1. Since U and W are subspaces of V, 0, the zero vector of V, is an

element of both U and W. Since 0 + 0 = 0, 0 ∈ U + W.
2. Let x1, x2 ∈ U + W. Then x1 = u1 + w1 and x2 = u2 + w2 for some

u1, u2 ∈ U and w1,w2 ∈ W. It follows that

x1 + x2 = (u1 + w1) + (u2 + w2) = (u1 + u2) + (w1 + w2).

Since U and W are subspaces of V, u1 + u2 ∈ U and w1 + w2 ∈ W, and
therefore x1 + x2 ∈ U + W.

3. Let x1 ∈ U + W and k ∈ R. Then x1 = u1 + w1 for some u1 ∈ U and
w1 ∈ W. It follows that kx1 = k(u1 +w1) = (ku1) + (kw1). Since U and
W are subspaces of V, ku1 ∈ U and kw1 ∈ W, and therefore
kx1 ∈ U + W.

By the Subspace Test, U + W is a subspace of V. �



Theorem
If U and W are finite dimensional subspaces of a vector space V, then
U + W is finite dimensional and

dim(U + W) = dim(U) + dim(W)− dim(U ∩ W).

Remark
V need not be finite dimensional!



Proof.
U ∩ W is a subspace of the finite dimensional vector space U, so is finite
dimensional, and has a finite basis X = {x1, x2, . . . , xd}. Since X ⊆ U ∩ W,
X can be extended to a finite basis BU of U and a finite basis BW of W:

BU = {x1, x2, . . . , xd, u1, u2, . . . , um} and BW = {x1, x2, . . . , xd,w1,w2, . . . ,wn}.

Then

span {x1, · · · xd, u1, · · · , um,w1, · · · ,wp} = U + W.



Proof. (continued)
What remains is to prove that

B = {x1, x2, . . . , xd, u1, u2, . . . , um,w1,w2, . . . ,wn}

is a basis of U + W since then it implies that

dim(U + W) = dim(U) + dim(W)− dim(U ∩ W)

m

d + m + p = (d + m) + (d + p)− d



Proof. (continued)
To prove B is linearly independent, we need to show that

r1x1 + · · ·+ rdxd + s1u1 + · · ·+ smum + t1w1 + · · ·+ tpwp = 0.

which is equivalent to

r1x1 + · · ·+ rdxd + s1u1 + · · ·+ smum︸ ︷︷ ︸
∈U

= −t1w1 − · · · − tpwp︸ ︷︷ ︸
∈W

Hence,
1. LHS ∈ U ∩ W, which implies that s1 = · · · = sm = 0.
2. RHS ∈ U ∩ W, which implies that t1 = · · · = tp = 0.

Finally,

r1x1 + · · ·+ rdxd = 0

implies that r1 = · · · = rd = 0. This proves that B is independent. �
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